



## BSI Standards Publication

### **Non-destructive testing of welds - Ultrasonic testing - Characterization of discontinuities in welds (ISO 23279:2017)**

---

**bsi.**

## National foreword

This British Standard is the UK implementation of EN ISO 23279:2017. It is identical to ISO 23279:2017. It supersedes BS EN ISO 23279:2010, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee WEE/46, Non-destructive testing.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2017  
Published by BSI Standards Limited 2017

ISBN 978 0 580 92830 7

ICS 25.160.40

**Compliance with a British Standard cannot confer immunity from legal obligations.**

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 September 2017.

### **Amendments/corrigenda issued since publication**

| Date | Text affected |
|------|---------------|
|      |               |

---

EUROPEAN STANDARD  
NORME EUROPÉENNE  
EUROPÄISCHE NORM

## EN ISO 23279

September 2017

ICS 25.160.40

Supersedes EN ISO 23279:2010

English Version

Non-destructive testing of welds - Ultrasonic testing -  
Characterization of discontinuities in welds (ISO  
23279:2017)

Essais non destructifs des assemblages soudés -  
Contrôle par ultrasons - Caractérisation des  
discontinuités dans les assemblages soudés (ISO  
23279:2017)

Zerstörungsfreie Prüfung von Schweißverbindungen -  
Ultraschallprüfung - Charakterisierung von  
Inhomogenitäten in Schweißnähten (ISO 23279:2017)

This European Standard was approved by CEN on 4 June 2017.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.



EUROPEAN COMMITTEE FOR STANDARDIZATION  
COMITÉ EUROPÉEN DE NORMALISATION  
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

## European foreword

This document (EN ISO 23279:2017) has been prepared by Technical Committee ISO/TC 44 "Welding and allied processes" in collaboration with Technical Committee CEN/TC 121 "Welding and allied processes" the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2018, and conflicting national standards shall be withdrawn at the latest by March 2018.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 23279:2010.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

### Endorsement notice

The text of ISO 23279:2017 has been approved by CEN as EN ISO 23279:2017 without any modification.

## Contents

|                                                                                                                       | Page      |
|-----------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Foreword</b>                                                                                                       | <b>iv</b> |
| <b>1 Scope</b>                                                                                                        | <b>1</b>  |
| <b>2 Normative references</b>                                                                                         | <b>1</b>  |
| <b>3 Terms and definitions</b>                                                                                        | <b>1</b>  |
| <b>4 Principle</b>                                                                                                    | <b>1</b>  |
| <b>5 Criteria</b>                                                                                                     | <b>2</b>  |
| 5.1 General                                                                                                           | 2         |
| 5.2 Echo amplitude criteria (stages 1 and 2)                                                                          | 3         |
| 5.2.1 Low amplitudes (stage 1)                                                                                        | 3         |
| 5.2.2 High amplitudes (stage 2)                                                                                       | 3         |
| 5.3 Directional reflectivity criteria (stage 3)                                                                       | 3         |
| 5.3.1 Applicability based on length                                                                                   | 3         |
| 5.3.2 Application conditions                                                                                          | 3         |
| 5.3.3 Criteria                                                                                                        | 3         |
| 5.4 Echo static pattern criteria (stage 4)                                                                            | 4         |
| 5.5 Transverse echo dynamic pattern criteria (stage 5)                                                                | 4         |
| 5.6 Complementary testing                                                                                             | 4         |
| <b>Annex A (normative) Classification of indications from internal discontinuities in welds — Flowchart procedure</b> | <b>5</b>  |
| <b>Annex B (informative) Directional reflectivity</b>                                                                 | <b>8</b>  |
| <b>Annex C (informative) Basic echo dynamic patterns of reflectors</b>                                                | <b>10</b> |

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives](http://www.iso.org/directives)).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see [www.iso.org/patents](http://www.iso.org/patents)).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: [www.iso.org/iso/foreword.html](http://www.iso.org/iso/foreword.html).

This document was prepared by Technical Committee ISO/TC 44, *Welding and allied processes*, Subcommittee SC 5, *Testing and inspection of welds*.

This third edition cancels and replaces the second edition (ISO 23279:2010), which has been technically revised.

Requests for official interpretations of any aspect of this document should be directed to the Secretariat of ISO/TC 44/SC 5 via your national standards body. A complete listing of these bodies can be found at [www.iso.org](http://www.iso.org).

# Non-destructive testing of welds — Ultrasonic testing — Characterization of discontinuities in welds

## 1 Scope

This document specifies how to characterize indications from discontinuities by classifying them as originating from planar or non-planar embedded discontinuities.

This procedure is also suitable for indications from discontinuities that break the surface after removal of the weld reinforcement.

## 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11666, *Non-destructive testing of welds — Ultrasonic testing — Acceptance levels*

ISO 17640, *Non-destructive testing of welds — Ultrasonic testing — Techniques, testing levels, and assessment*

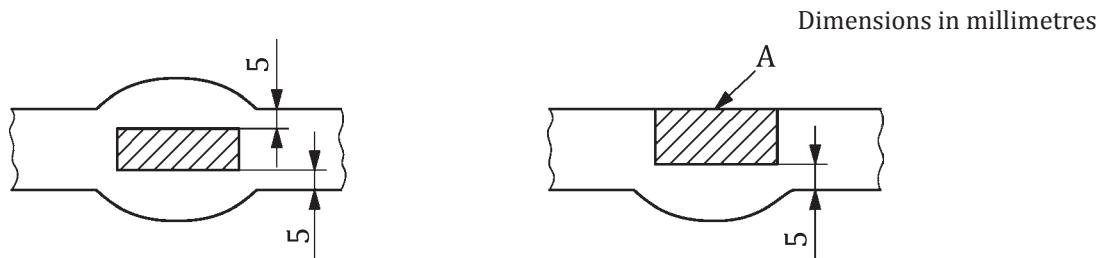
## 3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at <http://www.electropedia.org/>
- ISO Online browsing platform: available at <http://www.iso.org/obp>

## 4 Principle


Classification of discontinuities as planar or non-planar is based on several parameters:

- a) welding techniques;
- b) geometrical position of the discontinuity;
- c) maximum echo amplitude;
- d) directional reflectivity;
- e) echo static pattern (i.e. A-scan);
- f) echo dynamic pattern (envelope).

The process of classification involves examining each of the parameters against all the others in order to arrive at an accurate conclusion.

For guidance, [Figure A.1](#) gives the classification of indications from internal weld discontinuities suitable for general applications. [Figure A.1](#) should be applied in conjunction with the two parameters a) and b) listed above and not taken in isolation.

The classification procedure specified in this document is also suitable for indications that come from surface breaking discontinuities after removal of the weld reinforcement (see [Figure 1](#)).



#### Key

A ground weld

**Figure 1 — Origin of indications from a weld**

## 5 Criteria

### 5.1 General

The classification is carried out by the successive application of several discriminatory criteria to:

- a) echo amplitude;
- b) directional reflectivity;
- c) echo static pattern (A-scan);
- d) echo dynamic pattern (envelope).

These criteria shall be applied using the flowchart procedure according to [Annex A](#) and as described in [Clause 5](#).

It is recommended that the same probes be used for detection and for classification of discontinuities. The flowchart procedure standardizes a system of classification. Several thresholds are defined in decibels by a comparison with the distance-amplitude curve (DAC) or by a comparison of the maximum echo heights from the discontinuity when tested from different directions.

Proposed thresholds for the different stages in the flowchart procedure are given in [Table A.1](#).

The flowchart procedure calls for five stages:

- stage 1: to avoid the classification of indications with very low echo amplitudes;
- stage 2: to classify all indications with high echo amplitude as associated with planar discontinuities;
- stage 3: primarily to classify lack of fusion;
- stage 4: primarily to classify inclusions;
- stage 5: primarily to classify cracks.

**NOTE** Indications resulting from a combination of an inclusion and lack of fusion are classified as originating from a planar discontinuity by the flowchart procedure. An example of this type of discontinuity is given in [Figure A.2](#).

## 5.2 Echo amplitude criteria (stages 1 and 2)

### 5.2.1 Low amplitudes (stage 1)

It is accepted that an indication with an echo amplitude lower than the evaluation level as specified in ISO 11666 (defined as  $T_1$  in [Figure A.1](#)) is not significant and shall not be characterized.

For special applications, this value,  $T_1$ , may be lowered, if defined by specification.

### 5.2.2 High amplitudes (stage 2)

It is assumed that an indication with an echo amplitude that is at least equal to the reference level plus 6 dB (defined as  $T_2$  in [Figure A.1](#)) is associated with a planar discontinuity.

## 5.3 Directional reflectivity criteria (stage 3)

### 5.3.1 Applicability based on length

Stage 3 of the flowchart procedure shall be applied only to those indications exceeding:

- a) thickness  $t$  for the range  $8 \text{ mm} \leq t \leq 15 \text{ mm}$ ;
- b)  $t/2$  or 15 mm, whichever is larger, for thicknesses over 15 mm.

For indications not exceeding the specified length, proceed to stage 4.

### 5.3.2 Application conditions

The following application conditions apply:

- a) Echoes compared shall be obtained from the same reflector.
- b) The comparison shall be made at the position where echo height,  $H_{d, \text{max}}$ , is the highest along the indication.
- c) When a normal-beam probe and an angle-beam probe are used, their frequencies shall be chosen to give similar wavelengths (e.g. 4 MHz for longitudinal waves and 2 MHz for transverse waves for steel).
- d) When two or more beam angles are used, the differences between the nominal refracted beam angles shall be equal to or greater than  $10^\circ$ .
- e) If the comparison is made between a beam passing through the weld and a beam passing through the base material only, the attenuation of the weld material shall be taken into account.

### 5.3.3 Criteria

The highest echo amplitude,  $H_{d, \text{max}}$ , obtained from the discontinuity is compared with the minimum echo amplitude,  $H_{d, \text{min}}$ , obtained from all the other directions.

To satisfy the directional reflectivity, the following conditions shall be fulfilled simultaneously:

- a)  $H_{d, \text{max}}$  is greater than or equal to  $T_3$  (the reference level – 6 dB).
- b) The modulus of the difference of the amplitudes of the indications,  $|H_{d, \text{max}} - H_{d, \text{min}}|$ , from two different directions is at least
  - 1) 9 dB using transverse wave angle-beam probes only, or
  - 2) 15 dB using one transverse wave angle-beam probe and one longitudinal wave normal-beam probe.

The directional reflectivities depend on the angle of refraction and the test conditions (half skip, full skip).

Examples of different testing directions are given in [Figure B.1](#).

An example of the application of these criteria is given in [Figure B.2](#).

#### 5.4 Echo static pattern criteria (stage 4)

At this stage, the echo static pattern (i.e. A-scan) of the discontinuity is compared with that obtained from the reference reflector (3 mm diameter side-drilled hole).

If the echo static pattern is single and smooth, the discontinuity is classified as non-planar.

If the echo static pattern is not both single and smooth, proceed to stage 5.

These criteria shall be fulfilled for at least two directions of testing.

#### 5.5 Transverse echo dynamic pattern criteria (stage 5)

The transverse echo dynamic pattern of a discontinuity is the envelope of the resulting echoes when the ultrasonic probe is moved perpendicular to the discontinuity in accordance with ISO 17640. The analysis takes into account not only the envelope, but also the behaviour of the echoes inside of it.

Classification of discontinuities depends on the patterns observed:

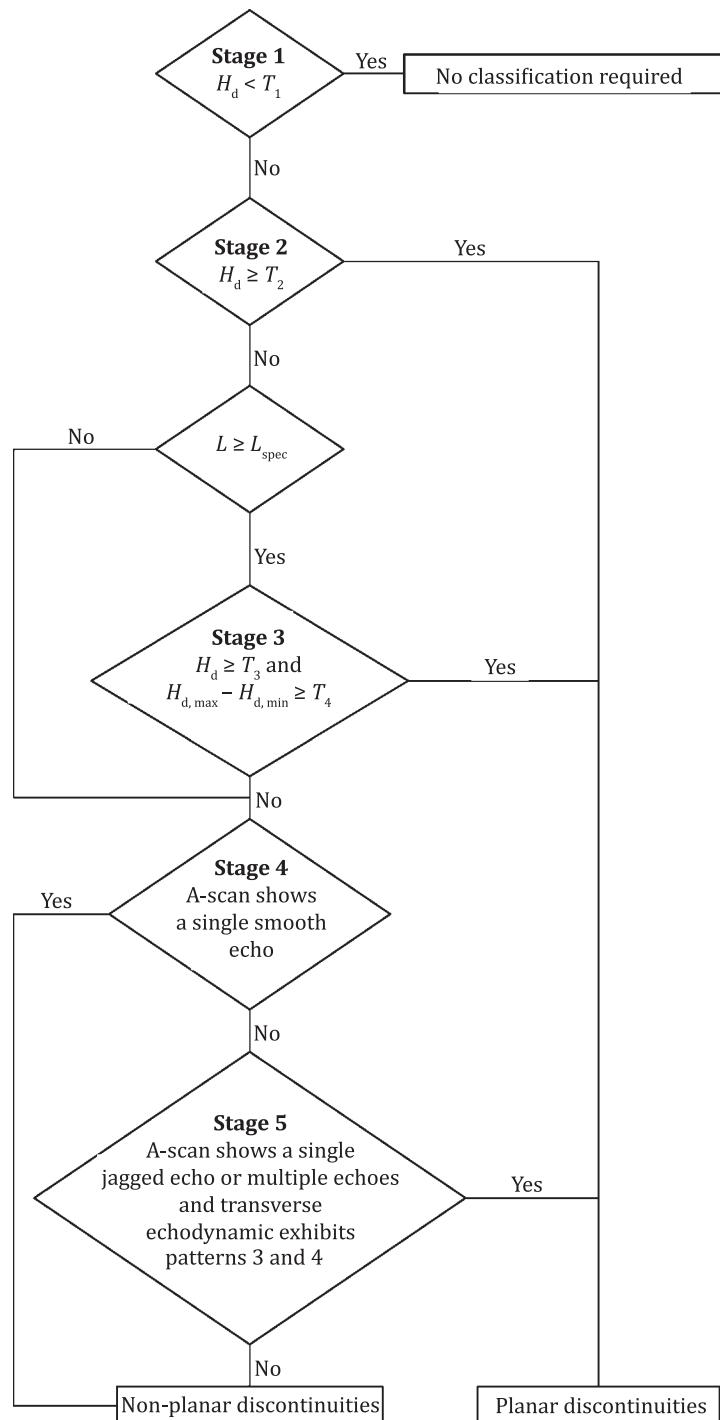
- pattern 1: single, non-planar discontinuity;
- pattern 2: excluded by previous stage;
- pattern 3 and pattern 4: planar discontinuity, if observed for the two directions of highest reflectivity; if only observed for one reflectivity direction, use complementary tests (see [5.6](#));
- pattern 5: cluster of non-planar discontinuities.

These patterns used for classification are given in [Annex C](#).

These criteria shall be fulfilled for at least two directions of testing.

#### 5.6 Complementary testing

In case of doubt, carry out additional tests, for example:


- a) use of additional reflectivity directions or additional probes;
- b) analysis of the echo dynamic pattern when the probe is moved parallel to the discontinuity [see [Figure C.1 c](#)), [Figure C.2 c](#)), [Figure C.3 c](#)), [Figure C.4 c](#)) and [Figure C.5 c- c\) other non-destructive testing methods \(e.g. radiography\).](#)

This list is not restrictive.

## Annex A (normative)

### Classification of indications from internal discontinuities in welds — Flowchart procedure

The flowchart procedure is defined in [Figure A.1](#).

**Key**

|                      |                               |
|----------------------|-------------------------------|
| $H_d$                | indication echo amplitude     |
| $H_{d, \text{max}}$  | maximum echo amplitude        |
| $H_{d, \text{min}}$  | minimum echo amplitude        |
| $L$                  | length                        |
| $L_{\text{spec}}$    | specified length              |
| $T_1, T_2, T_3, T_4$ | see <a href="#">Table A.1</a> |

**Figure A.1 — Flowchart procedure**

**Table A.1 — Different thresholds used in the flowchart procedure**

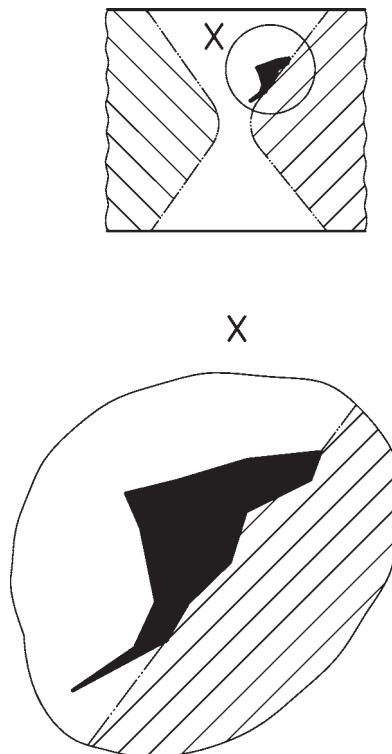
| Threshold                                                                    | $T_1$            | $T_2$                  | $T_3$                  | $T_4$                                   |
|------------------------------------------------------------------------------|------------------|------------------------|------------------------|-----------------------------------------|
| Threshold values                                                             | Evaluation level | Reference level + 6 dB | Reference level - 6 dB | 9 dB <sup>a</sup> or 15 dB <sup>b</sup> |
| a For transverse waves.                                                      |                  |                        |                        |                                         |
| b Between reflections obtained with transverse waves and longitudinal waves. |                  |                        |                        |                                         |

Stage 1 ( $T_1$ , i.e. evaluation level): All indications  $< T_1$  are not classified.

Stage 2 ( $T_2$ , i.e. reference level + 6 dB): An indication being at least twice as reflective as the reference reflector is classified as associated with a planar discontinuity.

Stage 3 ( $T_3$ , i.e. reference level - 6 dB): If the echo amplitude of the indication is at least half of the reference echo and, if the imbalance in reflectivity is greater than or equal to  $T_4$ , the indication is classified as associated with a planar discontinuity:

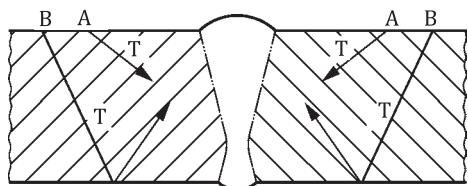
- with  $T_4 = 9$  dB for transverse waves;
- with  $T_4 = 15$  dB between reflections obtained with transverse waves and with longitudinal waves.


The angles at which the ultrasonic beam is incident upon the discontinuity shall have a difference of at least 10°. The comparison shall be made upon the same area of the discontinuity.

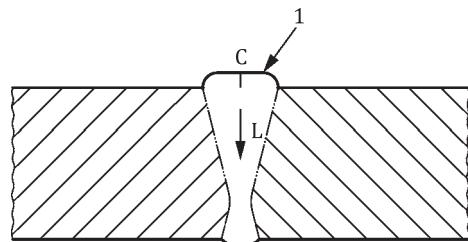
Stages 4 and 5: These criteria shall be fulfilled for at least two directions of testing.

Stage 5: If the echo dynamic pattern does not match pattern 3, the indication is classified as associated with a non-planar discontinuity.

The echo patterns are those defined in [Annex C](#).


Indications resulting from a combination of an inclusion and lack of fusion are classified as associated with a planar discontinuity by the flowchart procedure. An example of this type of discontinuity is given in [Figure A.2](#).



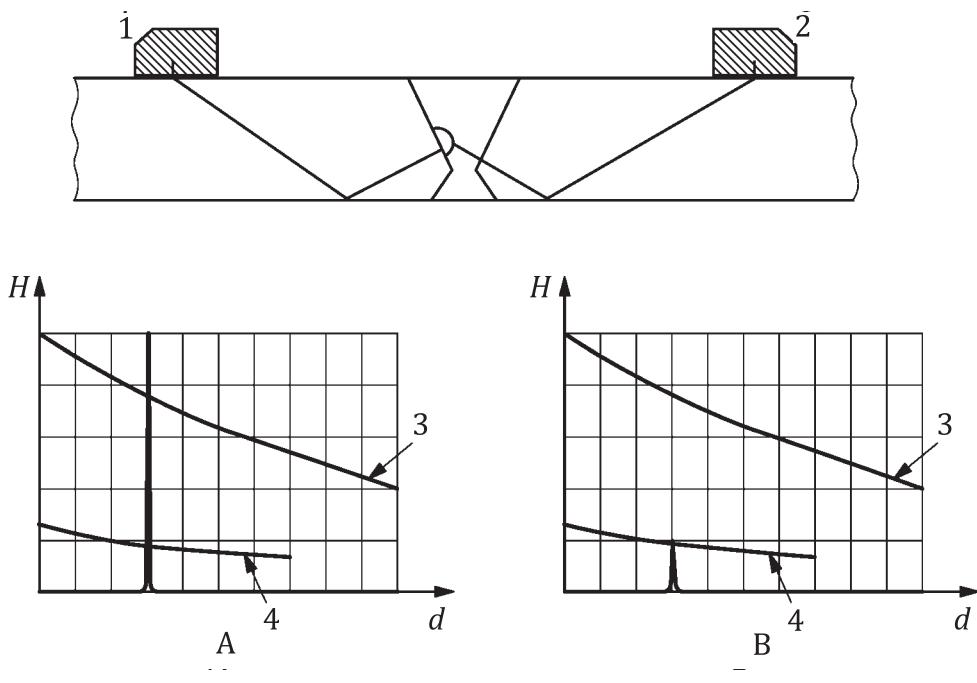

**Figure A.2 — Example of a combination of inclusion and lack of fusion**

## Annex B (informative)

### Directional reflectivity



a) Transverse waves, T




b) Longitudinal waves, L

#### Key

|         |                    |
|---------|--------------------|
| A, B, C | probe positions    |
| L       | longitudinal waves |
| T       | transverse waves   |
| 1       | local grinding     |

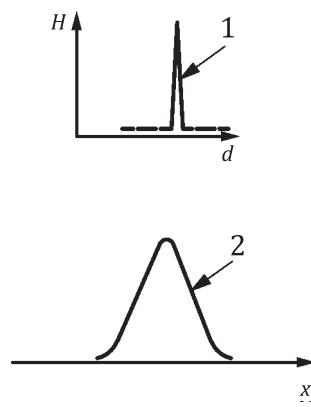
Figure B.1 — Examples of testing directions



**Key**

- A display when using position 1
- B display when using position 2
- 1 position 1
- 2 position 2
- 3 reference level
- 4 reference level – 9 dB
- $d$  sound path
- $H$  amplitude

**Figure B.2 — Example of application of directional reflectivity criteria**


## Annex C

(informative)

### Basic echo dynamic patterns of reflectors

#### C.1 Pattern 1

A point-like reflector response is shown in [Figure C.1](#). At any probe position, the A-scan shows a single sharp echo. As the probe is moved, it rises in amplitude smoothly to a single maximum before falling smoothly to noise level.

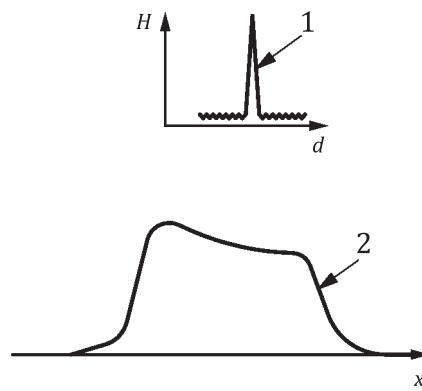


a) Probe position of A-scan and variation in signal amplitude

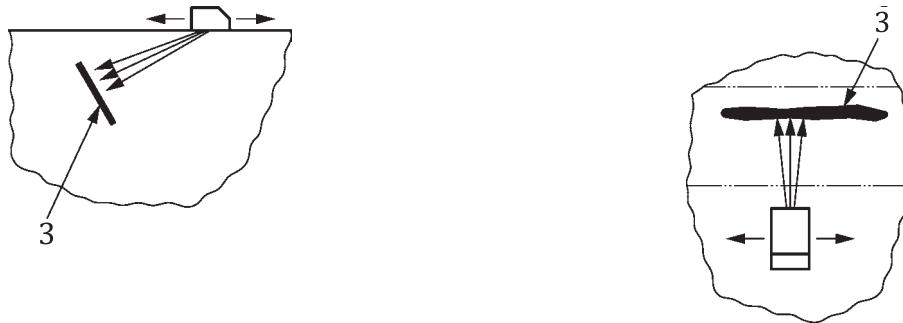


b) Typical occurrence in through-thickness direction

c) Typical occurrence in lateral (length) direction


#### Key

- 1 A-scan
- 2 variation in signal peak amplitude
- 3 reflector
- 4 weld
- $d$  range
- $H$  amplitude
- $x$  probe position


Figure C.1 — Pattern 1 ultrasonic response

## C.2 Pattern 2

An extended smooth reflector response is shown in [Figure C.2](#). At any probe position, the A-scan shows a single sharp echo. When the ultrasonic beam is moved over the reflector, the echo rises smoothly to a plateau and is maintained, with minor variations in amplitude of up to 4 dB, until the beam moves off the reflector, when the echo falls smoothly to noise level.



a) Probe position of A-scan and variation in signal amplitude



b) Typical occurrence in through-thickness direction

c) Typical occurrence in lateral (length) direction

### Key

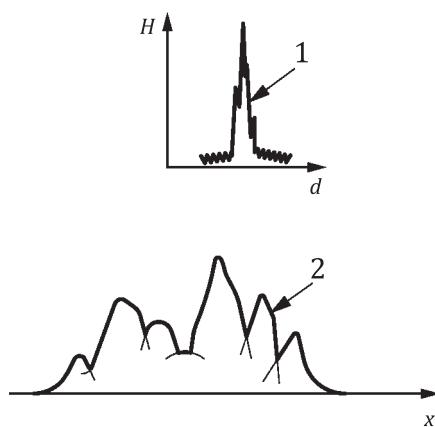
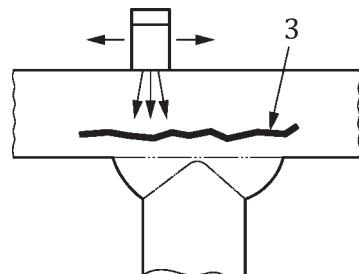
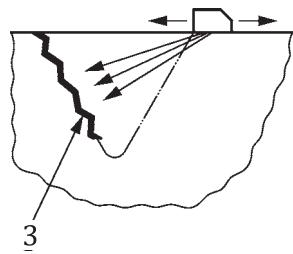

- 1 A-scan
- 2 variation in signal peak amplitude
- 3 reflector
- d* range
- H* amplitude
- x* probe position

Figure C.2 — Pattern 2 ultrasonic response



### C.3 Pattern 3

There are two variants of an extended rough reflector response depending upon the angle of incidence of the beam on the reflector.

One variant, at near normal incidence, is shown in [Figure C.3](#). At any probe position, the A-scan shows a single but ragged echo. As the probe is moved, this may undergo large (greater than  $\pm 6$  dB) random fluctuations in amplitude. The fluctuations are caused by reflection from different facets of the reflector and by random interference of waves scattered from groups of facets.

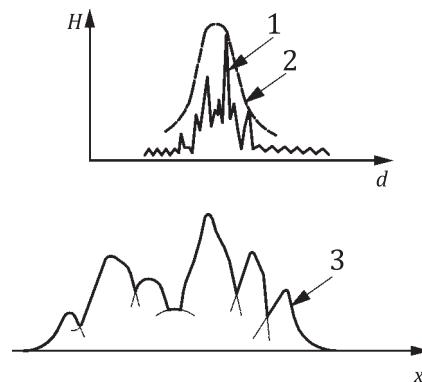


**a) Probe position of A-scan and variation in signal amplitude**

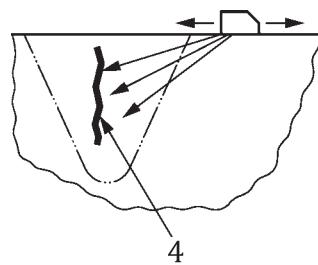


**b) Typical occurrence in through-thickness direction**

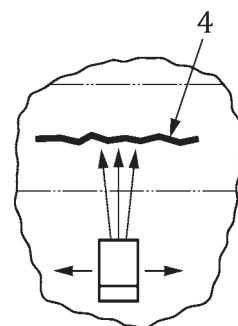
**c) Typical occurrence in lateral (length) direction**


#### Key

- 1 A-scan
- 2 variation in signal peak amplitude
- 3 reflector
- $d$  range
- $H$  amplitude
- $x$  probe position


**Figure C.3 — Pattern 3 ultrasonic response**

#### C.4 Pattern 4


The second variant of an extended rough reflector response, oblique incidence, “travelling echo pattern”, is shown in [Figure C.4](#). At any probe position, the A-scan shows an extended train of signals (“subsidiary peaks”) within a bell-shaped pulse envelope. As the probe is moved, each subsidiary peak travels through the pulse envelope, rising to its own maximum towards the centre of the envelope and then falling. The overall signal may show large (greater than  $\pm 6$  dB) random fluctuations in amplitude.



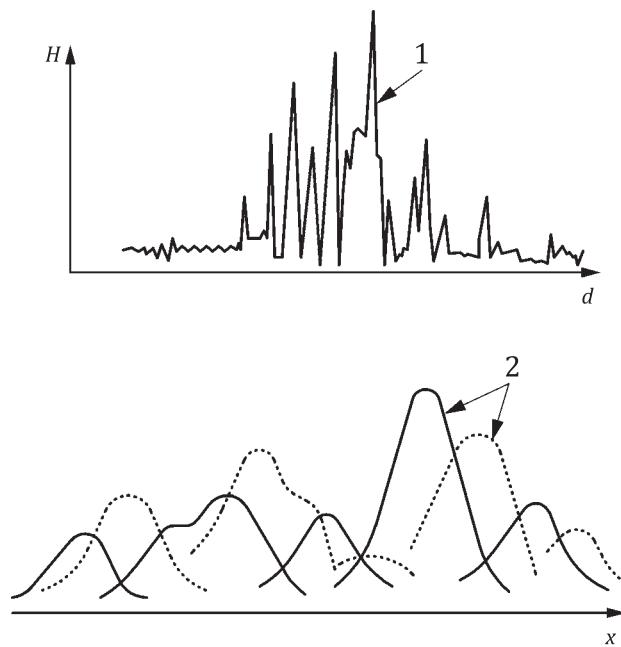
**a) Probe position of A-scan and variation in signal amplitude**



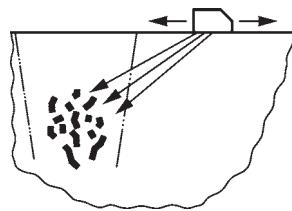
**b) Typical occurrence in through-thickness direction**



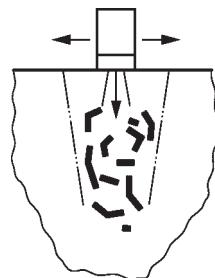
**c) Typical occurrence in lateral (length) direction**


#### Key

- 1 A-scan
- 2 pulse envelope
- 3 variation in signal peak amplitude
- 4 reflector
- $d$  range
- $H$  amplitude
- $x$  probe position


**Figure C.4 — Pattern 4 ultrasonic response**

## C.5 Pattern 5


A multiple reflector response is shown in [Figure C.5](#). At any probe position, the A-scan shows a cluster of signals which may or may not be well-resolved in range. As the probe is moved, the signals rise and fall at random, but the signal from each separate reflector element, if resolved, shows a pattern 1 response.



a) Probe position of A-scan and variation in signal amplitude



b) Typical occurrence in through-thickness direction



c) Typical occurrence in lateral (length) direction

### Key

- 1 A-scan
- 2 variation in signal peak amplitude
- continuous lines: long-range echoes
- dotted lines: short-range echoes
- $d$  range
- $H$  amplitude
- $x$  probe position

Figure C.5 — Pattern 5 ultrasonic response

*This page deliberately left blank*

# British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

## About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards-based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

## Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at [bsigroup.com/standards](http://bsigroup.com/standards) or contacting our Customer Services team or Knowledge Centre.

## Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at [bsigroup.com/shop](http://bsigroup.com/shop), where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

## Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

## Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced – in any format – to create an additional copy. This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

## Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

## Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to [bsigroup.com/subscriptions](http://bsigroup.com/subscriptions).

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

**PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit [bsigroup.com/shop](http://bsigroup.com/shop).

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email [subscriptions@bsigroup.com](mailto:subscriptions@bsigroup.com).

## Revisions

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

## Useful Contacts

### Customer Services

**Tel:** +44 345 086 9001

**Email (orders):** [orders@bsigroup.com](mailto:orders@bsigroup.com)

**Email (enquiries):** [cservices@bsigroup.com](mailto:cservices@bsigroup.com)

### Subscriptions

**Tel:** +44 345 086 9001

**Email:** [subscriptions@bsigroup.com](mailto:subscriptions@bsigroup.com)

### Knowledge Centre

**Tel:** +44 20 8996 7004

**Email:** [knowledgecentre@bsigroup.com](mailto:knowledgecentre@bsigroup.com)

### Copyright & Licensing

**Tel:** +44 20 8996 7070

**Email:** [copyright@bsigroup.com](mailto:copyright@bsigroup.com)

### BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK